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ABSTRACT

We present a new method for simultaneously denoising and unwrap-
ping phase in multi-frequency homodyne time-of-flight ranging for
the formation of accurate depth maps despite low SNR of raw mea-
surements. This is achieved with a new generalized approximate
message passing (GAMP) algorithm for minimum mean-squared er-
ror estimation of the phase. A detailed, physically-accurate acquisi-
tion model is central in achieving high accuracy, and the use of the
GAMP methodology allows low computational complexity despite
dense dependencies and the nonlinearity and non-Gaussianity of the
acquisition model. Numerical simulations demonstrate that our inte-
grated approach performs better than separate unwrapping followed
by denoising. This performance translates to lowering the optical
power consumption of time-of-flight cameras for a fixed acquisition
quality.

Index Terms— Belief propagation, generalized approximation
message passing, phase unwrapping, range imaging, time-of-flight
cameras, 3D capture.

1. INTRODUCTION

Measuring distances using the time-of-flight (ToF) of light is a well-
established method that is implemented in a variety of technolo-
gies. LIDAR systems sequentially make many range (longitudinal)
measurements by ToF; raster scanning by a laser light source pro-
duces the transverse spatial resolution to form a range image or
depth map [1,2]. Homodyne ToF cameras make these measure-
ments simultaneously with a diffuse light source and reflected light
focused on an array of sensors, enabling real-time imaging at video
rates [3—5]. Other methods for obtaining transverse spatial resolu-
tion have also recently been introduced [6, 7].

ToF systems use periodic light sources and hence suffer from pe-
riodic ambiguities in distance measurements—a phase unwrapping
problem. Phase unwrapping of two-dimensional signals is a long-
standing problem that arises in a variety of fields, including syn-
thetic aperture radar, magnetic resonance imaging, and adaptive op-
tics, as well as the ToF imaging methods of interest here [8]. Several
methods are reviewed in [9], including those based on norm mini-
mization [10], branch cuts [11], and network flows [12,13]. A more
recent technique attempts to solve nonconvex integer programming
problems and denoise after unwrapping [14].

The use of multiple modulation frequencies can aid in un-
wrapping by increasing the unambiguous distance [15-17] (see
Section 2.3), but it is not a panacea. The amount of data collected
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is proportional to the number of modulation frequencies, so the
acquisition speed must be increased to maintain a fixed frame rate.
Furthermore, the pixel-wise unwrapping problem is not easily or
accurately solved at low SNR. Other changes to hardware are also
possible, with various costs and benefits [18]. Phase unwrapping
remains a significant challenge because it is difficult to effectively
exploit domain knowledge about the signals and the acquisition
physics while keeping the computational complexity low.

This paper introduces an integrated method for addressing phase
unwrapping in ToF imaging based on loopy belief propagation (BP).
The method simultaneously applies probabilistic modeling and op-
timal estimation to accomplish both unwrapping and denoising in a
unified framework. Our solution maintains low complexity through
the use of generalized approximate message passing (GAMP) [19,
20] and, using the same hardware architecture as existing ToF sys-
tems, achieves better performance than separate processing. Our ap-
proach applies with one or more modulation frequencies; we demon-
strate it using two modulation frequencies.

The closest precedent to our work outside the context of ToF
imaging is the use of GAMP for phase retrieval [21]. The connection
is rather superficial in that the measurement model (and hence the
derived GAMP algorithm) is very different than the one considered
here. An additional novelty of our work is the use of GAMP with
a vector-valued measurement for each scalar mixed variable; this
highlights the generality of GAMP.

The rest of the paper is organized as follows: Section 2 describes
the operation and noise modeling of time-of-flight cameras and the
phase unwrapping problem that arises from using two modulation
frequencies. Section 3 presents the theory behind the denoising and
explains the structure of the problem. Section 4 compares the perfor-
mance of our method to existing methods for separately unwrapping
and denoising depth images. We conclude in Section 5.

2. OPERATION OF TIME-OF-FLIGHT CAMERAS

2.1. Homodyne Measurement of Phase

Fig. 1 shows the operation of an amplitude-modulated cosine wave
homodyne ToF camera. The T-periodic source signal s(t) = 1 +
cos(27 ft) with modulation frequency f = 1/7, generated from
T-periodic reference signal p(t), illuminates the entire scene. The
scene return signal at pixel ¢ can be modeled as

ri(t) = a; cos(2m f(t — 7)) + (a; + bs),

where a; is the attenuated amplitude of the reflected sinusoid, c is
the speed of light, 7, = 2z;/c is the time delay due to light travel
from the camera to the scene point at distance z; and back to the
sensor, and b; is the constant contribution from ambient light.
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77777

9i(¢;z) = a; cos(2mft — 4nfz;/c) —
Fig. 1: Signal processing abstraction of homodyne ToF camera un-
der differential mode operation.

The return signal r;(t) is correlated with the phase-shifted peri-
odic reference signal p(t + ¢) and a half-period shifted copy p(t +
¢ + T'/2). The phase shift ¢ is of interest, as will be demonstrated
shortly. The resulting correlation functions are subtracted (see [22]
for details), and the final measured output is a function of ¢ given by

9i(¢; zi) = a;cos(2mfp — Amfz; /).

Thus by varying the phase shift ¢ of the reference signal p(t + ¢),
we can effectively sample the correlation function g; (¢; 2;).
Estimating the amplitude of the sinusoid and the distance re-
quires at least two samples in ¢ per period of g¢;(¢;z;) at fixed
frequency f. However, typical ToF cameras take four equally-
spaced samples y( ™ = 9i(én; 2z;) in each period, ¢, = n/4f
forn = 0, 1, 2, 3. The rest of this paper will assume a 4-tuple
yi = (yfo), yfl), y1(2), y7(3)) is obtained for each pixel  at depth z;
using modulation frequency f. The conventional processing gives
pointwise estimates for sinusoid amplitude and wrapped distance:
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2.2. Statistical Distribution of Phase Measurements

ToF cameras are affected by shot noise [23], which is due to the
conversion of photons to electric charge in the sensor. This charge
generation can be modeled as a time inhomogeneous Poisson pro-
cess at each sensor pixel with rate A\;(t) = nr;(¢), where 7 is the
quantum efficiency of the sensor.

The correlation function is averaged over N periods to counter
the effects of the shot noise. For large N, according to the central
limit theorem, the output is approximately normally distributed,

">|z1~./\/(77g( zl),Qn(aerb)/N) forn=0,1,2,3.
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Each measurement of the cross correlation function is conditionally
independently given z;. The joint distribution of the measurements
4-tuple y; given the true distance at pixel ¢ is z; is given by
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where o7 = 2n(a; + b;)/N. Then the likelihood on observations
Y given true distance z; takes the form
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where A; = \/(yfo) yZ(Q)) + (y - yg‘?’))2 and %; is defined as
in (2). Since a; is not available directly to form our likelihood, we
instead use the value estimated as in (1), which is readily available
from measurements taken in current ToF cameras.

2.3. Phase Unwrapping

Since ToF imaging uses a periodic modulation source, measure-
ments beyond a certain range are ambiguous, and many different
true depth values can produce the same measurement; specifically,
zi = Z; + nc/(2f) for any n € Z. The maximum unambiguous
distance D = ¢/(2f) increases as modulation frequency decreases,
but with noise, the error in estimating distance increases as well; this
well-known fact can be derived from the earlier analysis.
Using two different modulation frequencies fy and fi,

c . c
2o sz1+n12fl
is the condition for ambiguity, where Z;; is the measured distance at
frequency f;. From this we can see that the extended unambiguous
distance is increased to D = ¢/(2 gcd(fo, f1)). In a noiseless set-
ting, the true distance within the extended range can be computed
by solving the above system. With noise, the unwrapping prob-
lem is nontrivial. Consider the joint likelihood of measuring both
sets of four samples at each of two frequencies, p(yio,¥yi1|zi) =
p(yio|zi)p(yi1|z:). The value for z; that maximizes the likelihood
function can be used as a pointwise estimate for the true distance of
the scene point. However, this likelihood is highly nonconvex and
finding the maximum likelihood estimate (MLE) essentially requires
a global grid search within the extended unambiguous distance.

zi = Zio + no for ng,n1 € Z

3. UNWRAPPING AND DENOISING USING GAMP

3.1. Sparsity-Based Denoising

Images of natural scenes have been shown to have sparse represen-
tations in certain bases, including discrete wavelet bases [24]. This
sparsity applies also to depth maps and can be exploited to perform
denoising. Wavelet coefficients x for a typical depth map tend to be
approximately Laplacian in distribution, with density

L e
p($k) — ?qe |z /al (4)

for some parameter ¢. In modeling wavelet coefficients of a noisy
image, g varies based on the scene structure and noise variance. One
method for denoising an image is to perform soft thresholding on
the wavelet coefficients [25]. This is equivalent to performing the
maximum a posteriori probability estimate with a Laplacian prior
on the coefficients assuming a Gaussian noise model.

3.2. GAMP-Based Unwrapping and Denoising

Fig. 2 shows a graphical model for our acquisition process. This
is amenable to GAMP since wavelet coefficients x can be mod-
eled as independent and the measurement process is separable on
the spatial-domain quantities z = ®x. Like approximate message
passing [26] and earlier techniques, GAMP uses approximations for
certain messages in loopy BP; unlike earlier techniques it allows the
non-Gaussianity of noise and nonlinearities discussed in Section 2.
To incorporate our model into the GAMP framework, we have
specified the prior distributions p(z)) and probabilistic measure-
ment channels p(yos, y1i|z:) as well as the linear transform ma-
trix ®. The distribution p(x) given in (4) promotes sparsity of
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Fig. 2: Forward acquisition model for the ToF camera measurements
at two modulation frequencies.

the wavelet coefficients of the estimate. The linear mixing matrix ®
performs the inverse discrete wavelet transform on x to obtain the
unwrapped image z ®x. The algorithm is summarized below,
and one step is illustrated in Fig. 3.

Algorithm 1 (High-level pseudocode for GAMP algorithm)
initialize: x(0) = 0,z(—1) =0
fort=0— N —1do

1. Output linear step: Compute
z(t) from ®, x(¢), and z(¢t — 1);
var(z(t)) from @ and var(x(t))
2. Output nonlinear step: For each ¢, estimate
(zi(t), var(z;(t))) from
(2:(t), var(2i(t))) and p(yoi, y1i|zi)
3. Input linear step: Compute
x(t) from ®" and z(t);
var(x(t)) from ®” and var(z(t))
4. Input nonlinear step: For each k, estimate
(zx(t), var(zy(¢t))) from
(2 (t), var(2x(t))) and p(zx)

end for

The output nonlinear step in Algorithm 1 estimates an expec-
tation and variance for z; based on the sample vectors (yo:,y1:)s
the likelihood function p(yos,y1:|2:), and the previous computed
values for the expectation and variance of 2; (see [19] for details).
However, the exact integral required does not have a closed-form
expression and is cumbersome to directly numerically integrate. In-
stead, an approximation can be made to the likelihood function to
simplify computation. The exponential of a cosine from (3) can be
closely approximated by the wrapped normal distribution [27]. For
j = 0,1 and each i, the approximated likelihood function is

(21 = Zi +nD;)*

i

G 1
p(yjilzi) o Z W exp{ -
K]

n=-—oo 20-32"
where
2 A2
sz-i: 2¢c 2ln(Io(nazAﬂ/U;))
(47 f;) Ii(naiAji/o7)

366

Output
Linear
Step

Intermediate  Output
Spatial
Estimate

Input
Linear
Step

Intermediate
Wavelet
Estimate

Spatial
Nonlinear Estimate
Step

Input Wavelet
Nonlinear Estimate
Step

x(t)
var(%(t))
o3

z(t) x(t+1)

2(t)
var(2(t))

=Y

o, y1)
PWoir V1i12:)

p(xi)

Fig. 3: One iteration of our GAMP algorithm for unwrapping and
denoising. This diagram shows the updates of the estimates z(¢) and
%x(t), represented by darker green nodes. The variances of the esti-
mates, var(z(t)) and var(X(¢)), represented by the light green nodes,
are updated concurrently at each step in a similar computation.

and I,, (k) is the modified Bessel function of the first kind. The likeli-
hoods p(yoi, y1i|2i) and p(yoi, y1:|2:) can be further approximated
without incurring much additional error within the extended unam-
biguous range by truncation to sums of L and M Gaussians respec-
tively. The likelihood p(yoi, y1i|2:) then becomes a weighted sum
of LM Gaussians.

The use of the Gaussian mixture to approximate the true likeli-
hood leads to a simple form for the expectation and variance com-
putations in the output nonlinear step—much lower than numerical
integration using the true likelihood. The linear mixing can be imple-
mented using a 2D fast discrete wavelet transform. Furthermore, the
structure of the algorithm allows the processing to be parallelized
and optimized for computation in real time, implemented either in
hardware or on a GPU, for example. Thus, the full integrated pro-
cessing can be performed quickly and accurately.

4. SIMULATIONS AND DISCUSSION

Our integrated GAMP-based unwrapping and denoising method was
compared against separate pointwise maximum likelihood estima-
tion for unwrapping followed by wavelet thresholding using Mat-
Lab’s default thresholds for denoising. The modulation frequen-
cies chosen were 30 MHz and 40 MHz, typical operating frequen-
cies for ToF cameras, yielding a maximum unambiguous range of
¢/(2 - 10MHz) =~ 15 m from the gcd modulation frequency of 10
MHz. The simulated scene was within the range of 0.5-12 m, caus-
ing wrapping for either modulation frequency taken separately.

The scene was the 450th frame taken from the right side cam-
era of the Tsukuba stereo pair dataset under different illumination
conditions [28,29]. The ground truth depth map was used to simu-
late z, the flashlight illumination represented active illumination and
spatially varying reflectivity used to simulate amplitudes a, and the
fluorescent light illumination simulated ambient background contri-
butions b. Defining the SNR to be the ratio between the average am-
plitude of the sinusoid and the standard deviation of noise in the sam-
ples, SNR = 101log;,(2a*>N/(a + b)) dB. We fix a and N = 100
and vary the SNR by varying b.

The 2D separable Daubechies length-4 discrete wavelet trans-
form is used in both the baseline method and our method. Our
GAMP algorithm was run for 20 iterations, and the MLE was found
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Fig. 6: MSE comparison for several methods across an SNR range.

using a discretized grid search. Wiener filtering was also performed
using the estimated spectrum and noise variance of MLE depth map.

Fig. 4 shows the simulated scene along with the wrapped images
produced by using (2) separately for each modulation frequency,
with SNR = 10 dB. Pointwise ML estimation is difficult (requiring
a grid search) and does not perform well, as shown in Fig. 5(a,b).
Post-processing the MLE by wavelet thresholding provides signifi-
cant improvement, as shown in Fig. 5(c,d). Wiener filtering provides
better MSE performance, as shown in Fig. 5(e,f). While the adap-
tive Wiener filter oversmooths in some blocks while leaving some
of the nosier patches untouched, wavelet thresholding does not de-
noise enough of the image at this SNR. The proposed GAMP-based
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method does much better, both visually and in MSE, as shown in
Fig. 5(g,h).

Fig. 6 provides a comparison over a range of low and moderate
SNRs. At extremely low SNRs, all methods fail to produce a useful
image; the proposed method allows successful operation at moder-
ate SNRs, for which can increase robustness to ambient light, lower
the illumination power requirement, or increase the frame rate. All
simulation code is available at http://rleweb.mit.edu/stir/spud/.

5. CONCLUSION

We have proposed a new method for integrated processing of data in
time-of-flight cameras to perform unwrapping and denoising jointly
rather than separately. The result is greatly improved performance
over post-processing of a noisy unwrapped image, particularly at
low SNRs. Because the scene is within the extended unambiguous
range, the success of the current method is due largely to the detailed
acquisition modeling rather than the use of a signal prior. Future
work could extend the integrated processing approach to beyond the
unambiguous range, including to cases with a single modulation fre-
quency, for certain classes of scenes. Automatic estimation of the pa-
rameters of a separable signal prior could be achieved by incorporat-
ing the Expectation-Maximization algorithm [30]. Greater structure
in the signal prior could be incorporated using hybrid GAMP [31,
32].



(1]

(2]

(3]

(4]

(53]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]
(18]

6. REFERENCES

A. Wehr and U. Lohr, “Airborne laser scanning—an introduc-
tion and overview,” ISPRC J. Photogrammetry & Remote Sens-
ing, vol. 54, no. 2-3, pp. 68-82, Jul. 1999.

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nature Pho-
tonics, vol. 4, no. 7, pp. 429-430, Jul. 2010.

A. Medina, F. Gay4, and F. del Pozo, “Compact laser radar
and three-dimensional camera,” J. Opt. Soc. Amer. A., vol. 23,
no. 4, pp. 800-805, Apr. 2006.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight
(ToF) cameras: A survey,” IEEE Sensors J., vol. 11, no. 9, pp.
1917-1926, Sep. 2011.

M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight
Cameras: Principles, Methods and Applications, ser. Springer-
Briefs in Computer Science. London: Springer, 2013.

A. Kirmani, A. Colago, F. N. C. Wong, and V. K. Goyal,
“Exploiting sparsity in time-of-flight range acquisition using
a single time-resolved sensor,” Opt. Expr., vol. 19, no. 22, pp.
21485-21507, Oct. 2011.

A. Colaco, A. Kirmani, G. A. Howland, J. C. Howell, and V. K.
Goyal, “Compressive depth map acquisition using a single
photon-counting detector: Parametric signal processing meets
sparsity,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Providence, RI, Jun. 2012, pp. 96-102.

L. Ying, “Phase unwrapping,” in Wiley Encyclopedia of
Biomedical Engineering, M. Akay, Ed. Wiley, 2006.

D. C. Ghiglia and M. D. Pritt, Time-Dimensional Phase Un-
wrapping: Theory, Algorithms, and Software. ~ New York:
Wiley, 1998.

M. D. Pritt and J. S. Shipman, “Least-squares two-dimensional
phase unwrapping using FFT’s,” IEEE Trans. Signal Process.,
vol. 32, no. 3, pp. 706708, May 1994.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite
radar interferometry: Two-dimensional phase unwrapping,”
Radio Sci., vol. 23, no. 4, pp. 713-720, Jan. 1988.

N. H. Ching, D. Rosenfeld, and M. Braun, “Two-dimensional
phase unwrapping using a minimum spanning tree algorithm,”
IEEE Trans. Image Process., vol. 1, no. 3, pp. 355-365, 1992.

M. Costantini, “A novel phase unwrapping method based on
network programming,” IEEE Trans. Geosci. Remote Sensing,
vol. 36, no. 3, pp. 813-821, May 1998.

G. Valadao and J. Bioucas-Dias, “Phase imaging: Unwrapping
and denoising with diversity and multi-resolution,” in Proc.
2008 Int. Workshop on Local and Non-Local Approx. in Image
Process., Lausanne, Switzerland, 2008.

A.D. Payne, A. P. P. Jongenelen, A. A. Dorrington, M. J. Cree,
and D. A. Carnegie, “Multiple frequency range imaging to re-
move measurement ambiguity,” in Proc. 9th Conf. Optical 3-D
Measurement Techniques, Vienna, Austria, Jul. 2009, pp. 139—
148.

D. Droeschel, D. Holz, and S. Behnke, “Multi-frequency phase
unwrapping for time-of-flight cameras,” in IEEE/RSJ, 2010,
pp. 1463-1469.

A. Kirmani, A. Benedetti, and P. A. Chou.

O. Choi and S. Lee, “Wide range stereo time-of-flight camera,”
in Proc. IEEE Int. Conf. Image Process., 2012.

368

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

S. Rangan, “Generalized approximate message passing for
estimation with random linear mixing,” arXiv:1010.5141v1
[cs.IT]., Oct. 2010.

——, “Generalized approximate message passing for estima-
tion with random linear mixing,” in Proc. IEEE Int. Symp. In-
form. Theory, Saint Petersburg, Russia, Jul.—Aug. 2011, pp.
2174-2178.

P. Schniter and S. Rangan, “Compressive phase retrieval via
generalized approximate message passing,” in Proc. 50th Ann.
Allerton Conf. on Commun., Control and Comp., Monticello,
IL, Oct. 2012.

S. B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth
sensor — system description, issues and solutions,” in Proc.
Conf. Comput. Vis. Pattern Recog. Workshop, 2004, p. 35.

F. Mufti and R. Mahony, “Statistical analysis of measurement
processes for time-of-flight cameras,” in Proc. SPIE, vol. 7447,
2009, p. 744701

A. Srivastava, A. B. Lee, E. P. Simoncelli, and S.-C. Zhu, “On
advances in statistical modeling of natural images,” J. Math.
Imaging Vision, vol. 18, no. 1, pp. 17-33, Jan. 2003.

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans.
Inform. Theory, vol. 41, no. 3, pp. 613-627, May 1995.

D. L. Donoho, A. Maleki, and A. Montanari, ‘“Message-
passing algorithms for compressed sensing,” Proc. Nat. Acad.
Sci., vol. 106, no. 45, pp. 18914-18 919, Nov. 2009.

M. A. Stephens, “Random walk on a circle,” Biometrika,
vol. 50, no. 3—4, pp. 385-390, 1963.

S. Martull, M. Peris, and K. Fukui, “Realistic cg stereo im-
age dataset with ground truth disparity maps,” ICPR workshop
TrakMark2012, vol. 111, no. 430, pp. 117-118, 2012.

M. Peris, S. Martull, A. Maki, Y. Ohkawa, and K. Fukui, “To-
wards a simulation driven stereo vision system,” in Pattern
Recognition (ICPR), 2012 21st International Conference on.
IEEE, 2012, pp. 1038-1042.

J. P. Vila and P. Schniter,
Gaussian-mixture approximate
arXiv:1207.3107 [cs.IT], Jul. 2012.

S. Rangan, A. K. Fletcher, V. K. Goyal, and P. Schniter, “Hy-
brid approximate message passing with applications to struc-
tured sparsity,” arXiv:1111.2581 [cs.IT], Nov. 2011.

——, “Hybrid generalized approximate message passing with
applications to structured sparsity,” in Proc. IEEE Int. Symp.
Inform. Theory, Cambridge, MA, Jul. 2012, pp. 1241-1245.

“Expectation-maximization
message passing,”



