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First-Photon Imaging
Ahmed Kirmani,1* Dheera Venkatraman,1 Dongeek Shin,1 Andrea Colaço,1 Franco N. C. Wong,1

Jeffrey H. Shapiro,1 Vivek K Goyal1,2*

Imagers that use their own illumination can capture three-dimensional (3D) structure and
reflectivity information. With photon-counting detectors, images can be acquired at extremely
low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers
typically require hundreds of detected photons per pixel for accurate range and reflectivity
determination. We introduce a low-flux imaging technique, called first-photon imaging, which
is a computational imager that exploits spatial correlations found in real-world scenes and the
physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from
the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub–pulse
duration range and 4-bit reflectivity information in the presence of high background
noise. First-photon imaging may be of considerable value to both microscopy and
remote sensing.

Thecapture of three-dimensional (3D) struc-
ture and reflectivity using an active imager
when the back-reflected optical flux reach-

ing the detector approaches a few photons per
pixel has many applications (1–3). Imagers for
such applications typically use Geiger-mode
avalanche photodiodes (APDs), which can time-
resolve single-photon detections with jitters of a
few tens of picoseconds (4). Transverse spatial res-
olution is typically obtained point by point by
using raster-scanned illumination and a single de-
tector (5) or with floodlight illumination and a
spatially resolving detector array (6).

In 3D light detection and ranging (LIDAR)
systems (3, 7), the scene is illuminated with a
stream of laser pulses, the back-reflected light is
detected with a Geiger-mode APD, pixel-by-pixel
range information is obtained from histograms of
the time delays between transmitted and detected
pulses (8), and pixel-by-pixel relative reflectivity
is found from the number of photons detected in
a fixed dwell time. Tens of photon detections per
pixel suffice for accurate range imaging when
background light is inconsequential, despite the
Poisson noise inherent in photon counting (9, 10).
Hundreds of photons, however, are needed for
accurate reflectivity imaging, even in the absence
of background light. Similar numbers are neces-
sary for range imaging when detections arising
from background light lead to anomalous range
values (11, 12). In first-photon imaging, we cap-
ture 3D spatial structure and reflectivity by using
only the first photon detection at each pixel. It is a
computational method for low-flux imaging that
produces high-quality range images, despite the
presence of high background noise, and high-
quality reflectivity images, when a conventional
reflectivity image built from one photon detec-
tion per pixel would be featureless. These results

derive from exploiting the spatial correlations
present in real-world scenes within a computa-
tional framework matched to the physics of low-
flux measurements.

For each pixel, our imager used the number of
illumination pulses before the first photon detec-
tion as an initial reflectivity estimate. Poisson noise
precludes these pixel-by-pixel estimates from pro-
viding a high-quality reflectivity image. We sup-
pressed that noise by exploiting the high degree
of spatial correlation in real-world scenes; that is,
that neighboring pixels have strong distance and
reflectivity correlations punctuated by sharp bound-
aries. Such correlations can be captured through a
Markov random field (13) or sparsity in the scene’s
discrete wavelet transform (DWT) coefficients
(14, 15). We suppressed Poisson noise in the

reflectivity image by means of a DWT-based reg-
ularization. We also exploited spatial correlations
to censor anomalous range values from an initial
pixel-by-pixel range image.

Our setup (Fig. 1) consists of a pulsed laser
source illuminating a scene with quasi-Lambertian
reflectivity in a raster-scanned manner and an in-
candescent lamp that injects background light.
Back-reflected laser light plus background light
was collected by a Geiger-mode APD providing
time-resolved single-photon detections. Each spa-
tial location (pixel),ðx, yÞ, was illuminatedwith a
periodic stream of laser pulses until the first photon
was detected. We recorded the first detected pho-
ton’s arrival time, tðx, yÞ, relative to the most re-
cently transmitted pulse, along with the number
of pulses, nðx, yÞ, that were transmitted before
that detection. The lamp’s optical power was ad-
justed so that each first-photon detection had about
50% probability of originating from background
light.

The first-photon data were used to reconstruct
scene reflectivity, aðx, yÞ, and 3D spatial struc-
ture, Zðx, yÞ, via the following three-step proce-
dure. First, we connected the statistics of nðx, yÞ
to aðx, yÞ. Let S be the average photon number
in the back-reflected signal received from a single
laser pulse illuminating a unity-reflectivity spatial
location, B denote the arrival rate of background
photons at the detector (16), Tr be the pulse repe-
tition period, and g be the imager’s photodetection
efficiency. The probability of not detecting a pho-
ton when pixel ðx, yÞ is illuminated by a single
laser pulse is (16)

P0ðx,yÞ ¼ e−g½aðx, yÞSþBTr �
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Fig. 1. Experimental setup for first-
photon imaging. A repetitively pulsed
laser raster scans the scene. Back-
reflected laser light is detected with a
Geiger-mode APD. Each spatial loca-
tion is illuminated until the first pho-
ton detection occurs.
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Because each transmitted pulse gives rise to
independent Poisson noise, nðx, yÞ has the geo-
metric distribution

Pr½nðx, yÞ ¼ k� ¼ P0ðx, yÞk−1½1 − P0ðx, yÞ�,

for k ¼ 1, 2, ::: ð1Þ

In the absence of background light, the
pointwise maximum-likelihood reflectivity esti-
mate, ⌢aMLðx, yÞ, is proportional to 1=nðx, yÞ for
nðx, yÞ >> 1 (16). However, background illu-
mination severely corrupts these pointwise esti-
mates (Fig. 2, A to C). Our imager exploits spatial
correlations to accurately reconstruct scene reflec-
tivity by maximizing the product of data like-
lihoods (Eq. 1) over all spatial locations combined
with a sparsity-promoting regularization function,
namely the sum of absolute values of the image’s
DWT coefficients (16). The resulting global
optimization problem is strictly convex (16);
thus, a unique optimal reflectivity estimate is
readily obtained from standard numerical solvers
(17, 18).

The pointwise range estimate from a first-
photon detection is

⌢
Z ðx, yÞ ¼ ctðx, yÞ=2 for a

transmitted pulse whose peak is at time t ¼ 0,
where c is the speed of light. Its root mean square
(RMS) estimation error is ðc=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðT2
p þ T2

r =12Þ=2
q

in the presence of background light (16), where
Tp << Tr is the laser pulse’s RMS time duration
and the 1/12 factor comes from the uniformly
distributed nature of the background-generated de-
tections. Direct application of a spatial-correlation
regularization to maximizing time-of-arrival like-
lihoods is infeasible, because background light
makes the optimization objective function multi-
modal. Background light also causes pointwise
methods to fail (Fig. 2, A to C), so we used spa-
tial correlations to censor tðx, yÞ values that are
range anomalies.

Anomalous detections have arrival times that
are uniformly distributed over the time interval
½0, Tr� and mutually independent over spatial
locations, so that they have high variance T 2

r =12
relative to that of back-reflected laser-pulse (sig-
nal) detections, which are temporally concen-
trated and spatially correlated. Let sðtÞ be the
normalized ½∫Tr0 sðtÞdt ¼ 1� photon-flux wave-
form of the laser pulse emitted at t ¼ 0. At low
optical flux, that is, when gðS þ BTrÞ << 1, and
the first photon detected from location ðx, yÞ is a

signal photon, then the probability density func-
tion for tðx, yÞ is (16)
ptðx, yÞðtÞ ¼ sðt − 2Zðx, yÞ=cÞ, for 0 ≤ t ≤ Tr

ð2Þ
which has variance T2

p << T 2
r =12, regardless of

the reflectivity at ðx, yÞ. The high degree of spa-
tial correlation in the scene’s 3D structure then
implies that signal-generated photon arrival times
have much smaller conditional variance, given
data from neighboring locations, than do anom-
alous detections. Step 2 of the computational im-
ager uses this statistical separation to censor
background-generated arrival times from an ini-
tial pixel-by-pixel range image.

For each spatial location, a rank-ordered ab-
solute differences statistic (19) is computed by
using the photon arrival times of its eight nearest
neighbors (16). Then, a binary hypothesis test—
whose decision threshold is dependent on the re-
flectivity estimate from step 1—identifies, with
high probability, whether the photon detection
was due to signal or background (Fig. 2, G to I),
allowing us to delete nearly all anomalous range
values.
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Fig. 2. Computational first-photon 3D and reflectivity reconstruction. (A to L) 3D estimates of front views and lateral views rendered as point clouds
overlaid with reflectivity data.
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Once background detections have been re-
jected, 3D estimation using photon arrival times,
ftðx, yÞgbecomes tractable. Our final processing
step computes the regularizedmaximum-likelihood
3D estimate by maximizing the product of data
likelihoods (Eq. 2), over the uncensored spatial
locations, combined with a DWT-based penalty
function that exploits spatial correlations present
in a scene’s 3D structure (16).

After radiometric calibration, we tested first-
photon imaging on scenes with both geometric
and reflectivity complexity. One object investi-
gated was a life-sized mannequin with white
polystyrene head and torso donned with a black
cotton shirt imprinted with white text. The ap-
proximate dimensions of the head were 20 cm by
16.5 cm by 24 cm, and those of the torso were
102 cm by 42 cm by 29 cm. The mannequin was
placed at a range of 1.5 m from the imaging
setup. By using the first-photon data, we esti-
mated the object reflectivity and 3D spatial form
as described above. For a 1-megapixel reflectiv-
ity and 3D reconstruction, our data acquisition
time was about 20 min, and the computations
took less than 3 min on a desktop computer. A
standard graphics package was then used to vi-
sualize the object’s 3D profile, overlaid with reflec-
tivity data, after each processing step (Fig. 2, D to
L, and movie S1).

Our first-photon imager recovers a great deal
of object detail. Figures 2, D to F, and 3 show
recovery of reflectivity information—including
text, facial features, surface reflectivity variations,
and specular highlights—that are heavily obscured
in pointwise maximum-likelihood estimates. As
shown in Fig. 2, G to I, background-detection cen-
soring affords substantial improvement in range
estimation, so that the reconstructed 3D form re-
veals fine structural features, such as the nose,
eyes, and lips (Fig. 2, J to L).

To quantify the accuracy of our approach, we
compared the 3D reconstruction of the manne-
quin head with a 3D image captured with our
imaging setup operating as a direct-detection
LIDAR. For this reference capture, background
light was first reduced to negligible levels, after
which ~1000 photon detections were recorded at
each spatial location. Pointwise 3D estimates were
then obtained from a photon-counting histogram.
This data-intensive baseline technique allows sub-
mm-accuracy 3D reconstruction for our Tp=
226 ps value (20).

Figure 4 shows superimposed facial profiles
from the two methods. Both 3D forms were mea-
sured by using the same imaging setup, obviating
the need for registration or scaling. The RMS
error of our computational imager was slightly
lower than 3.5 mm, with higher values near the
edge of the mannequin and around the sides of
the nose and the face. These locations have sur-
face normals that are nearly perpendicular to the
line of sight, which dramatically reduces their back-
reflected signal strength relative to background
light. Consequently, they incur more anomalous
detections than do the rest of the pixels. Although

our method censors range anomalies near edges,
it estimates the missing ranges by using spatial
correlations, leading to loss of subtle range details
at these edges.

The range resolution of our computational
imager was measured with a test target and found
to be about 4 mm (figs. S2 to S5). This resolution
is 8.5 times smaller than cTp=2 = 34 mm (our

setup’s RMS error for pointwise first-photon range
estimation in the absence of background light) and
765 times smaller than ðc=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðT2
p þ T2

r =12Þ=2
q

=
3.06 m (our setup’s RMS error for pointwise
first-photon range estimation in the presence of
background light) (16). Moreover, LIDAR-mode
pointwise range estimation froma photon-counting
histogram required at least 115 photons per pixel
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Fig. 3. Reflectivity reconstruction from first-photon detections. The scale quantifies reflectivity
relative to that of a high-reflectivity calibration point, a(xref,yrefÞ, on a 0 to 1 scale.
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Fig. 4. Comparison between computational first-photon 3D imager and LIDAR system. Rendered
views of the facial surfaces reconstructed with computational imaging (gray) and 3D LIDAR (green) are
shown in frontal (B) and lateral (A) and (C) profiles with arrows indicating the locations of significant
range discrepancies. Color-coded absolute pointwise differences between the two surfaces, overlain on the
LIDAR reconstruction, are shown in (D) to (F).
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to achieve a 4-mm RMS error under identical
imaging conditions.

Reflectivity measurements with a test pattern
showed that our method provided at least 4 bits
of information; that is, 16 linear gray-scale levels
could be distinguished (figs. S6 to S9). We also
tested the repeatability of our method by collect-
ing 500 independent first-photon data trials for
the mannequin. We found our first-photon im-
ager to consistently demonstrate qualitative and
quantitative improvement over pointwise process-
ing (movie S2). Its performance was also repro-
ducible with other real-world scenes composed
of multiple distinct objects at different ranges
(figs. S10 to S12).

For completeness, we compared our imager
with image-denoising techniques. One such meth-
od median filters the pointwise estimates (Fig. 2,
A to C). Its reduction of noise resulting from anom-
alous detections comes at the expense of image
oversmoothing, which leads to loss of perceptual
information contained in edges, reflectivity, and
structural variations. State-of-the-art denoising
algorithms, like BM3D (21), exploit spatial cor-
relations to mitigate high levels of noise, but they
fail to match the performance of our imager be-
cause first-photon detection statistics differ from
the conventional noise models that such algo-
rithms presume (figs. S13 and S14).

Our computational first-photon imaging tech-
nique achieves its high-quality performance by
using spatial correlations to suppress Poisson
noise in reflectivity images and censor range anom-
alies from arrival-time data. It extracts more
information from the collection of single detec-
tions than state-of-the-art active imagers would.
Thus, it allows laser power to be reduced with-

out sacrificing image quality, something that
can be crucial for biological applications, such
as fluorescence-lifetime imaging (22, 23). It
also enables remote sensing at longer standoff
distances with power-limited transmitters and
could be combined with techniques for detecting
multiple depths per pixel (24). The system we
have demonstrated can be improved with better
background-light suppression (25), range gating
(26), and advances in single-photon detector tech-
nology (27, 28).
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Direct Stereospecific Synthesis of
Unprotected N-H and N-Me Aziridines
from Olefins
Jawahar L. Jat,1 Mahesh P. Paudyal,1 Hongyin Gao,1 Qing-Long Xu,1 Muhammed Yousufuddin,2

Deepa Devarajan,3 Daniel H. Ess,3*† László Kürti,1*† John R. Falck1*†

Despite the prevalence of the N-H aziridine motif in bioactive natural products and the clear
advantages of this unprotected parent structure over N-protected derivatives as a synthetic building
block, no practical methods have emerged for direct synthesis of this compound class from
unfunctionalized olefins. Here, we present a mild, versatile method for the direct stereospecific
conversion of structurally diverse mono-, di-, tri-, and tetrasubstituted olefins to N-H aziridines
using O-(2,4-dinitrophenyl)hydroxylamine (DPH) via homogeneous rhodium catalysis with no
external oxidants. This method is operationally simple (i.e., one-pot), scalable, and fast at
ambient temperature, furnishing N-H aziridines in good-to-excellent yields. Likewise, N-alkyl
aziridines are prepared from N-alkylated DPH derivatives. Quantum-mechanical calculations
suggest a plausible Rh-nitrene pathway.

Aziridines, the triangular, comparably high-
ly strained nitrogen analogs of epoxides,
are important synthetic intermediates (i.e.,

building blocks) en route to structurally complex

molecules because of their versatility in myriad
regio- and stereoselective transformations (ring
openings and expansions, as well as rearrange-
ments) (1–6). The aziridine structural motif,

predominantly N-H and to a lesser extent N-alkyl,
also appears in biologically active natural products
(e.g., azinomycins and mitomycins) (7–9). As a
result, the synthesis and chemistry of aziridines
have been the subject of intense research during
the past 25 years, resulting in multiple aziridina-
tion methods (10–23). Most of these methods rely
either on the transfer of substituted nitrenes, which
are generated by using strong external oxidants, to
the C=C bond of olefins or the transfer of sub-
stituted carbenes to the C=N bond of imines. Nor-
mally, the result is an aziridine bearing a strongly
electron-withdrawingN-protecting group (e.g., Ts:
para-toluenesulfonyl; Ns: para-nitrophenylsulfonyl);
removal of these N-sulfonyl protecting groups is
problematic as it often results in the undesired
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