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Abstract—In conventional 3D imaging, a large number of
detected photons is required at each pixel to mitigate the
effect of signal-dependent Poisson or shot noise. Parametric
Poisson process imaging (PPPI) is a new framework that enables
scene depth acquisition with very few detected photons despite
significant contribution from background light. Our proposed
computational imager is based on accurate physical modeling of
the photon detection process using time-inhomogeneous Poisson
processes combined with regularization that promotes piecewise
smoothness. Simulations demonstrate accurate imaging with only
1 detected photon per pixel.

Index Terms—computational 3D imaging, convex optimization,
Poisson processes, single-photon avalanche diodes, time-of-flight
cameras.

I. INTRODUCTION

This paper introduces a new conceptual framework for ac-
tive 3D optical imaging in low-light scenarios. We consider the
use of raster-scanned illumination and detection of light with
one single-photon avalanche diode (SPAD); the framework
applies identically with flood illumination and a SPAD array.
Due to the quantum nature of light, the SPAD measures a
Poisson process at each spatial location. The framework is
called parametric Poisson process imaging (PPPI) because the
essential idea is that the rate of each Poisson process is a
parametric function with parameters that encode features such
as scene reflectance, distance to scene points, and background
light level. The parametric nature of these functions along with
correlations over the spatial dimensions enable effective esti-
mation with only a few detected photons and with significant
contribution from background light.

A. Main contributions

Conceptual: We introduce a physically-accurate model for
the signal produced by a SPAD under weak lighting that in-
corporates arbitrary illumination pulse shape, inhomogeneous
Poisson process characteristics (shot noise from the quantum
nature of light), and detector reset time.

Algorithmic: We provide a method for spatiotemporally-
regularized estimation of the depth map. Our algorithm pro-
duces accurate 3D images from 1 photon per pixel (ppp) data.

Experimental: In work detailed elsewhere [1], we achieve
very high photon efficiency for 3D depth imaging using raster-
scanned illumination with a pulsed laser and detection of the
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backscattered light with a single SPAD. Depth estimation at
1 ppp is comparable to a traditional technique with 100 ppp
or 17 times narrower pulse width. We also show how the
proposed computational imager outperforms state-of-the-art
image denoising algorithms.

B. Related Work

Algorithmic: Image acquisition at low-light levels is chal-
lenging due to the signal dependent nature of the noise.
Denoising of low-light images captured by SPAD sensors
is typically accomplished using the Poisson or shot noise
model along with sparsity-promoting regularization [2]. These
methods assume that the number of collected photons is
Poisson distributed with parameter proportional to the true
intensity. For depth imaging using a SPAD sensor, first a large
number of individual photon arrival times are recorded at every
pixel to generate a photon count histogram for each pixel [3],
[4]. Since the photon count is very high, the maximum
likelihood (ML) depth estimate is obtained by simply applying
the matched filter, defined by the pulse waveform, to the
count histogram [5]. When the photon count is low, depth
estimation will have nonnegligible variance depending on the
pulse width. After forming the depth image, spatial averaging
is used for further denoising to improve image quality while
sacrificing spatial resolution. Thus, forming a depth map with
high spatial resolution using very low photon counts is difficult
using traditional estimation methods.

3D imaging using active illumination: Imagers based on the
time-of-flight (TOF) principle modulate the intensity of light
to vary as a function of time. Some examples are homodyne
TOF sensing [6], pulsed TOF cameras [7], and picosecond
laser radar systems [8]. While these require specialized de-
tectors, their advantages are millimeter-resolution sensing and
high photon efficiency due to the optical illumination source
having low duty cycle. Sensors that spatially modulate the
light include speckle decorrelation imaging, structured light,
and active stereo imaging [9]. These can be implemented
using standard CMOS detector arrays, their disadvantages are
centimeter-resolution sensing and low photo efficiency due
to the optical illumination source having high (often 100%)
duty cycle. Among the aforementioned systems, TOF imagers
using SPAD detectors have the highest photon efficiency. Our
proposed framework further improves the photon efficiency of
SPAD imagers, which translates to lower optical power and
lower system bandwidth without sacrificing imaging quality.
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Fig. 1. Rate function of inhomogeneous Poisson process combining desired
scene response and background noise signal. Individual single photon detec-
tions from noise (1) and signal (2) are shown.

II. IMAGING SETUP

The light source and SPAD are co-located. Scene patches
are indexed by i ∈ {1, 2, . . . , M}. The reflectance of patch i,
denoted ai, includes the effect of radial fall-off, viewing angle,
and material properties. The distance to patch i is denoted zi.

We use an intensity-modulated light source with pulse
shape s(t) and pulse repetition interval T . We assume that,
to avoid distance aliasing, T > 2 zmax/c, where zmax is
largest scene depth and c is the speed of light. We also
assume Tw � 2 zmax/c, where Tw is the root mean square
(RMS) pulse width, so that fine localization of depth is
possible; for conventional ML estimation (MLE), Tw governs
the achievable depth resolution [3].

In practice, every detected photon is time stamped within an
accuracy of ∆, called the time bin size. We assume ∆� Tw
so that the time bin size is not a significant impediment to
fine depth resolution. In summary, the various time parameters
satisfy ∆� Tw � 2 zmax/c < T . When the detector records
a photon arrival—referred to as a click—it becomes inactive
for a small duration called the reset time or dead time.

For each raster position i, we repeatedly illuminate scene
patch i until the first click. The discrete time bin Ti of the click
(relative to the time that the most recent pulse was emitted)
is measured to form the data set {Ti}Mi=1.

III. PROBABILISTIC MODEL

Illuminating scene patch i with intensity-modulated light
pulse s(t) results in backscattered light intensity ri(t), which
is modeled as ri(t) = ai s(t− 2zi/c) + bλ, where bλ denotes
the background light intensity at the operating wavelength.
We denote by η the detector quantum efficiency, which is the
fraction of photons that trigger electrical impulses. Accounting
for the quantum nature of light, the function η ri(t) is thus
the rate of an inhomogeneous Poisson process observed at the
SPAD, and photon arrivals are recorded per these statistics.
The SPAD detector records these photon arrivals in time bins
of size ∆. It is also necessary to add the detector dark counts,
which are modeled as an independent Poisson process with
rate d. The observed inhomogeneous Poisson process has rate

λi(t) = η ri(t) + d = η ai s(t− 2zi/c) + (ηbλ + d).

By defining b = bλ + d/η, we see that η is an overall
multiplicative factor that can be set to 1 without loss of

generality. Repetitions until the first click create a periodic
rate function as shown in Figure 1.

Derivation of distributions: The depth of patch i is prob-
abilistically encoded in the bin index Ti, which is a discrete
random variable. Let Nt1,t2 be the number of photon detec-
tions in the interval [t1, t2]. For the moment, assume b = 0.
Then, the probability mass function (PMF) for Ti satisfies

pTi
(ki; zi, ai) ∝ Pr[N0,(ki−1)∆ = 0] Pr[N(ki−1)∆,ki∆ ≥ 1]
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where the dependence of the PMF on the parameters zi and
ai has been emphasized. When ∆ is infinitesimally small,
we observe a continuous-valued arrival time with probability
density function (PDF) satisfying
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(
vi −

2zi
c

)
exp

{
−ai

∫ vi

0

s

(
x− 2zi

c

)
dx

}
.

We would like to know how fTi(vi; zi, ai) behaves under low
light levels (small ai). We observe the following.

Theorem 1. Let U be a continuous random variable with
PDF fU (u; zi) = s(u − 2zi/c)/

∫ T
0
s(x − 2zi/c) dx, i.e., the

distribution obtained by shifting and normalizing the emitted
pulse waveform. Then limai→0+ fTi

(u; zi, ai) = fU (u; zi).

Because of Theorem 1, we can use the approximation

fTi(vi; zi, ai)
small ai≈ s(vi − 2zi/c)∫ T

0
s(x− 2zi/c) dx

. (1)

Under this approximation, our estimate of zi is valid when
the light intensity at the detector is low, as would be the case
when photon efficiency is important.

Signal vs. noise: In order to mitigate the background noise,
one may try to estimate background level b through calibration
and directly model the likelihood as

fTi
(vi; zi, ai)

small ai,b≈
ais(vi − 2zi/c) + b1[0,T ](vi)∫ T

0
(ais(x− 2zi/c) + b) dx

,

where 1[0,T ](·) is the indicator function for the interval [0, T ].
However, including the uniform distribution in the likelihood
leads to a nonconvex MLE problem. Thus, we instead rely
on a censoring scheme that identifies and rejects background
photons. We use S to denote the set of patch indices that have
signal photons, and PPPI includes a step to estimate S.

IV. NOVEL IMAGE FORMATION

Our proposed computational 3D image formation method
uses the regularized ML estimation technique. We combine
physically-realistic probabilistic signal models derived in the
previous section with regularization using sparsity. With this
approach, we achieve significant improvements over pointwise
ML and over traditional denoising as post-processing applied
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without a detailed physical model. The image formation hap-
pens in 2 steps.

1. Noise detection identification: Noise events are gener-
ated from a homogeneous Poisson process with constant rate,
resulting in detection times with the uniform distribution on
[0, T ]. In contrast, signal photons are generated by a time-
inhomogeneous Poisson process whose rate is proportional to
the backscattered waveform (concentrated in a time duration
Tw � T ). Thus, combining the two sources of detected pho-
tons, we have approximately a mixture distribution combining
a uniform distribution and an impulsive distribution.

The rank-ordered absolute differences (ROAD) statistic was
introduced in [10] to provide a hypothesis test to separate an
impulsive distribution from a higher-variance distribution. For
patch i, the ROAD statistic uses the neighborhood N(i) of
size 8 containing the immediate neighbors. It is defined as

ROAD(i) = argmin
i1,i2,i3,i4∈N(i)

(
4∑
k=1

|vi − vik |

)
,

where i1, i2, i3, i4 must be distinct. Intuitively, ROAD(i) is a
measure of how much the value vi deviates from its neighbors,
with only the 4 nearest values used so that the effect of
the high-variance component in the neighboring values is
minimized. A high value for ROAD(i) indicates that few
neighboring patches have nearby values, so the detection at
patch i is likely to be due to a noise detection. To obtain our
estimated signal patch set S, we thus reject detections likely
to be due to noise using the ROAD statistic as follows:{

i ∈ S, if ROAD(i) < 4(2Tw);
i /∈ S, if ROAD(i) ≥ 4(2Tw).

More generally, if we estimate using L independent single-
photon detections per patch, then the binary hypothesis testing
will be based on the statistic

R(i) = 1
L

∑L
k=1 ROAD(k)(i),

where ROAD(k)(i) is the ROAD statistic at patch i computed
from the kth detection at each patch.

2. Depth estimation: Once noisy pixels are identified, we
can readily formulate the negative log-likelihood function for
estimation of depth at patch i ∈ S from censored continuous
photon arrival times {vi}i∈S as

Lz(zi; vi) = − log fU (vi; zi) ≡ − log s(vi − 2zi/c),

where the final equivalence omits an additive constant that
does not depend on zi. Our framework allows the use of
arbitrary pulse shapes, but many practical pulse shapes, like
Gaussian and lopsided pulse shapes, are well approximated
as s(t) = e−f̄(t), where f̄(t) is a convex function in t. In
such cases, Lz(zi; vi) = f̄(vi − 2zi/c) is a convex function
in zi. Our regularized ML depth estimate is obtained from
filtered data {vi}i∈S by solving the following constrained
optimization problem:

arg min
Z=[z1,...,zM ]

zmin≤zi≤zmax

∑
i∈S
Lz(zi; vi) + β ‖Z‖TV, (2)

where ‖ · ‖TV is the total variation seminorm. Note that (2) is
essentially an image inpainting problem.

V. NUMERICAL EXPERIMENTS

We simulated low-light SPAD-based imaging for the scene
shown in Figure 2(a) to demonstrate the depth accuracy of
our PPPI framework. For every patch, we model the scene
amplitude as ai = A/z2

i , where A is a constant. From patch
to patch, the probabilities of observing background photons
will thus not necessarily be the same. Our transmitted pulse
is modeled with a generalized Gaussian function defined as
s(t) ∝ exp(−(|t|/a)p), where p and a control the concavity
and the spread of the pulse, respectively. The generalized
Gaussian family includes Gaussian (p = 2) and near-uniform
(large p) functions. Since generalized Gaussian functions are
log-concave, our regularized depth estimator is obtained by
solving a simple convex program. The regularization parame-
ter β in (2) was chosen to maximize PSNR.

Figure 2 shows depth map recovery results only using 1
photon detection per pixel. The setup parameters were p = 3,
a = 10, and T = 200a. The background light level was
set such that the probability of a detected photon being a
background photon, on average over the whole field of view,
was 0.32. Our computational imaging method has high PSNR
gain over well-known denoising algorithms, which are post-
processing methods on the MLE result. Median filter denoising
successfully removes salt-and-pepper noise but it fails in
preserving the fine edge features of the scene. The state-of-the-
art BM3D denoising [11] seems to reject most of the noisy
data but we see that it introduces a bias in the background
and thus leading to a moderate PSNR gain. Figure 3 zooms
in to several regions of recovered depth maps. We clearly
see that our computational imager can finely resolve object
gradients and even make out objects in the far field region,
where background photons are more likely to be detected.

Figure 4 shows the high photon efficiency of PPPI compared
to the traditional pixelwise MLE method. In this setup, we
image the same scene with chess pieces but the parameters
used are p = 2, a = 10, and T = 200a. Also, the background
light level was set such that the mean probability of a detected
photon being a background photon is approximately 0.2. The
black dashed lines show that at least 80 ppp is required for
MLE to achieve the same PSNR that our computational imager
achieves using 1 detected ppp.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new 3D imaging framework
that enables robust scene depth acquisition with very few
photon detections under high background light illumination.
Our method accurately models the photon arrival statistics
and exploits the piecewise smoothness of depth maps to form
accurate images. We demonstrate the high photon efficiency
of our computational imaging method over the traditional ML
estimator. We also show that our method is more successful in
preserving high frequency details and small features compared
to popular image denoising algorithms.
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(a) Truth (b) MLE (c) MLE+Median filtering (d) MLE+BM3D (e) Our method
PSNR=11.2 dB PSNR=17.3 dB PSNR=17.1 dB PSNR=24.5 dB

Fig. 2. Depth map results using only one detected photon per pixel.

(a) Truth (b) MLE (c) MLE+Median filtering (d) MLE+BM3D (e) Our method

Fig. 3. Depth map of chess pieces (zoomed in boxes from Figure 2(a)). Our method clearly identifies gradients and edges of the chess pieces.

Fig. 4. PSNR vs. ppp plot showing high photon efficiency of PPPI (blue,
solid) over pixelwise ML estimation (red, dashed) with contribution from
background light.

Although this paper mainly investigates imaging at low light
levels, our approach may also extend to optical imaging using
photon-counting detectors at high optical flux. Accurate like-
lihood modeling under arbitrary flux levels to estimate depth
is thus of future interest. Furthermore, the PPPI framework
extends to intensity imaging as well.

ACKNOWLEDGMENTS

The authors thank Dheera Venkatraman, Franco N. C.
Wong, and Jeffrey H. Shapiro for their contributions to the
modeling and experiments.

REFERENCES

[1] A. Kirmani, D. Venkatraman, A. Colaço, F. N. C. Wong, and V. K.
Goyal, “High photon efficiency computational range imaging using
spatio-temporal statistical regularization,” in Proc. CLEO, San Jose, CA,
Jun. 2013, paper QF1B.2.

[2] Z. T. Harmany, R. F. Marcia, and R. M. Willett, “Sparsity-regularized
photon-limited imaging,” in IEEE Int. Symp. Biomed. Im.: From Nano
to Macro, Rotterdam, Apr. 2010, pp. 772–775.

[3] R. M. Gagliardi and S. Karp, Optical Communications. Wiley, 1976.
[4] G. Buller and A. Wallace, “Ranging and three-dimensional imaging

using time-correlated single-photon counting and point-by-point acqui-
sition,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 4, pp. 1006–
1015, Jul.–Aug. 2007.

[5] D. L. Snyder, Random Point Processes. New York, NY: John Wiley &
Sons, 1975.

[6] S. B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor
— system description, issues and solutions,” in Proc. Conf. Comput. Vis.
Pattern Recog. Workshop, 2004, p. 35.

[7] G. J. Iddan and G. Yahav, “3d imaging in the studio (and elsewhere),”
in Proc. SPIE, vol. 4298, 2001, pp. 48–55.

[8] A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace,
and G. S. Buller, “Long-range time-of-flight scanning sensor based
on high-speed time-correlated single-photon counting,” Appl. Optics,
vol. 48, no. 32, pp. 6241–6251, Nov. 2009.

[9] S. B. Kang, J. A. Webb, L. C. Zitnick, and T. Kanade, “A multibaseline
stereo system with active illumination and real-time image acquisition,”
in Proc. 5th Int. Conf. Comput. Vis., 1995, pp. 88–93.

[10] R. Garnett, T. Huegerich, C. Chui, and W. He, “A universal noise re-
moval algorithm with an impulse detector,” IEEE Trans. Image Process.,
vol. 14, no. 11, pp. 1747–1754, Nov. 2005.

[11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080–2095, 2007.

1056


