
Compressive Depth Map Acquisition Using a Single Photon-Counting Detector:
Parametric Signal Processing Meets Sparsity

Andrea Colaço1, Ahmed Kirmani1, Greg Howland2, John Howell2, Vivek K Goyal1∗
1Massachusetts Institute of Technology

2University of Rochester
∗vgoyal@mit.edu

Abstract

Active range acquisition systems such as light detection and
ranging (LIDAR) and time-of-flight (TOF) cameras achieve high
depth resolution but suffer from poor spatial resolution. In this
paper we introduce a new range acquisition architecture that does
not rely on scene raster scanning as in LIDAR or on a two-
dimensional array of sensors as used in TOF cameras. Instead,
we achieve spatial resolution through patterned sensing of the
scene using a digital micromirror device (DMD) array. Our depth
map reconstruction uses parametric signal modeling to recover
the set of distinct depth ranges present in the scene. Then, us-
ing a convex program that exploits the sparsity of the Laplacian
of the depth map, we recover the spatial content at the estimated
depth ranges. In our experiments we acquired 64×64-pixel depth
maps of fronto-parallel scenes at ranges up to 2.1 m using a pulsed
laser, a DMD array and a single photon-counting detector. We
also demonstrated imaging in the presence of unknown partially-
transmissive occluders. The prototype and results provide promis-
ing directions for non-scanning, low-complexity range acquisition
devices for various computer vision applications.

1. Introduction

Acquiring 3D scene structure is an integral part of
many applications in computer vision, ranging from surveil-
lance and robotics to human-machine interfaces. While
2D imaging is a mature technology, 3D acquisition tech-
niques have room for significant improvements in spatial
resolution, range accuracy, and cost effectiveness. Com-
puter vision techniques—including structured-light scan-
ning, depth-from-focus, depth-from-shape, and depth-from-
motion [7,17,21]—are computation intensive, and the range
output from these methods is highly prone to errors from
miscalibration, absence of sufficient scene texture, and low
signal-to-noise ratio (SNR) [13, 17, 20]. In comparison, ac-
tive range acquisition systems such as LIDAR systems [19]
and TOF cameras [6, 8] are more robust against noise [13],
work in real time at video frame rates, and acquire range in-
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Figure 1. Compressive depth acquisition setup showing a 2 ns
pulsed laser source s(t), a DMD array with N × N -pixel res-
olution, and a single photon-counting detector. For each sens-
ing pattern, R illumination pulses are used to generate an inten-
sity histogram with K time bins. This process is repeated for
M pseudorandomly-chosen binary patterns and the M ·K inten-
sity samples are processed using a computational framework that
combines parametric deconvolution with sparsity-enforcing regu-
larization to reconstruct an N ×N -pixel scene depth map.

formation from a single viewpoint with little dependence on
scene reflectance or texture. Both LIDAR and TOF cameras
operate by measuring the time difference of arrival between
a transmitted pulse and the scene reflection. Spatial resolu-
tion in LIDAR systems is obtained through raster scanning
using a mechanical 2D laser scanning unit and light detec-
tion using a photon counting device such as an avalanche
photodiode (APD) [1, 3, 15, 19]. TOF cameras use a 2D ar-
ray of range sensing pixels to acquire the depth map of a
scene [6, 8, 16]. The scanning time limits spatial resolution
in a LIDAR system, and due to limitations in the 2D TOF
sensor array fabrication process and readout rates, the num-
ber of pixels in TOF camera sensors is also currently limited
to a maximum of 320 × 240 pixels [16, 18]. Moreover, in
TOF-based range sensors, depth resolution is governed by
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the pulse width of the source. Consequently, it is desirable
to develop active range sensors with high spatial resolution
without increasing the device cost and complexity.

In this paper, we introduce a framework for acquiring
the depth map of a fronto-parallel scene using only a sin-
gle time-resolved detector and a pulsed laser diode as the
illumination unit. In our imaging setup (see Fig. 1), an om-
nidirectional, pulsed periodic light source illuminates the
scene. Light reflected from the scene is focused onto a
DMD which is then focused onto a single photon-counting
APD that generates an intensity histogram of photon ar-
rivals. This measurement process is repeated for a se-
ries of pseudorandomly-chosen binary DMD patterns. The
recorded timing histograms are computationally processed
to obtain a 2D scene depth map at the same pixel resolution
as the DMD patterns.

2. Contributions

1. We demonstrate that it is possible to acquire a 2D depth
map of a scene using a single time-resolved detector
and no scanning components, with spatial resolution
governed by the pixel resolution of the DMD array and
the number of sensing patterns.

2. The parametric signal processing used in our com-
putational depth map reconstruction achieves signifi-
cantly better range resolution than conventional non-
parametric techniques with the same pulse widths.

3. The use of sparsity-enforcing regularization allows
trade-offs between desired spatial resolution and the
number of sensing patterns.

4. We experimentally demonstrate our depth acquisition
technique for typical scene ranges and object sizes
using a low-power, near-infrared pulsed laser and an
APD. We also demonstrate the effectiveness of our
technique by imaging objects hidden behind partially-
transmitting occluders, without any prior knowledge
about the occluder.

3. Related Work

In this section we discuss challenges and prior work re-
lated to the use of compressive acquisition methods in TOF
sensing.

3.1. Compressive Acquisition of Scene Reflectance

Many natural signals can be represented or approximated
well using a small number of nonzero parameters. This
property is known as sparsity and has been widely exploited
for signal estimation and compression [5]. Making changes
in signal acquisition architectures—often including some

form of randomization—inspired by the ability to effec-
tively exploit sparsity in estimation has been termed com-
pressed sensing (CS). CS provides techniques to estimate
a signal vector x from linear measurements of the form
y = Ax + w, where w is additive noise and vector y has
fewer entries than x. The estimation methods exploit that
there is a linear transformation T such that Tx is approxi-
mately sparse. An early instantiation of CS in an imaging
context was the “single-pixel camera” [4, 23].

3.2. Challenges in Exploiting Sparsity in Range Ac-
quisition

The majority of range sensing techniques attempt to ac-
quire the entire signal corresponding to time-of-flight mea-
surements either through raster scanning every point of in-
terest in the field of view or establishing a correspondence
between each spatial point and an array of sensors. The
underlying signal of interest—depth—in these cases is nat-
urally sparse in a wavelet domain or has sparse gradient or
Laplacian. Furthermore, the depth map of a scene is gener-
ally more compressible or sparse than the reflectance or tex-
ture. Thus, we expect a smaller number of measurements to
suffice; as expounded in Section 6, our number of measure-
ments is 12% of the number of pixels as compared to 40%
for reflectance imaging [4, 23].

Compressively acquiring range information using only a
single detector poses two major challenges. First, the quan-
tity of interest—depth—is embedded in the reflected signal
as a time shift. The measured signal at the detector is a sum
of all reflected returns and hence does not directly measure
this time shift. This nonlinearity worsens when there are
multiple time shifts in the returned signal corresponding to
the presence of many depths. The second challenge comes
from the fact that a single detector loses all directionality
information about the reflected signals; this is present in re-
flectance imaging as well.

3.3. Compressive LIDAR

In a preliminary application of the CS framework to
range acquisition in LIDAR systems [11], 2 ns square pulses
from a function generator drive a 780 nm laser diode to il-
luminate a scene. Reflected light is focused onto a DMD
that implements pseudorandomly-chosen binary patterns.
Light from the sensing patterns is received at a photon-
counting detector and gated to collect photons arriving from
an a priori chosen range interval, and then conventional
CS reconstruction is applied to recover an image of the
objects within the selected depth interval. The use of im-
pulsive illumination and range gating make this a conven-
tional CS problem in that the quantities of interest (re-
flectances as a function of spatial position, within a depth
range) are combined linearly in the measurements. Hence,
while this approach unmixes spatial correspondences it does



not directly solve the aforementioned challenge of resolving
nonlinearly-embedded depth information. The need for ac-
curate range intervals of interest prior to reconstruction is
one of the major disadvantages of this system. It also fol-
lows that there is no method to distinguish between objects
at different depths within a chosen range interval. More-
over, acquiring a complete scene depth map requires a full
range sweep. The proof-of-concept system [11, 12] has
60 cm range resolution and 64× 64 pixel resolution.

3.4. Compressive Depth Acquisition Camera

Resolving both the challenges with compressive depth
sensing was first demonstrated in [14] in the near-range case
for small objects. Their demonstration considered near-
range scenes—less than 1 ft away from the imaging setup.
The imaging device uses patterned illumination and a sin-
gle sensor to record reflected observations. Additionally,
the framework considers only piecewise planar, Lambertian
objects with simple shapes and does not address transmis-
sive occlusions.

4. Signal Modeling of Scene Response and
Depth Map Reconstruction

Consider a piecewise-planar scene comprising two fronto-
parallel objects as shown in Fig. 1.

4.1. Parametric Response of Fronto-Parallel Facets

When an omnidirectional pulsed source illuminates the
scene, the signal r(t) received at the single time-resolved
photodetector is the convolution of a parametric signal p(t)
with the pulse shape s(t). The parametric signal p(t) com-
prises time-shifted returns corresponding to the objects at
depths d1 and d2. The returns from each object are highly
concentrated in time because the scene is in far-field and
the object dimensions are small compared to the distances
d1 and d2. For complete scene response modeling we refer
the reader to [14]. Note that the parametric signal p(t) is
completely characterized by four parameters: the locations
and amplitudes of the two peaks. The problem of recov-
ering these signal parameters from the discrete samples of
r(t), a lowpass filtered version of p(t), is a canonical finite
rate of innovation (FRI) sampling problem [22]. Note that
the parameters of the scene response p(t) only furnish in-
formation about the depth ranges present in the scene; they
convey no information about the object shapes and their po-
sitions in the field-of-view of the imaging device.

4.2. Shape and Transverse Position Recovery

The next step is to obtain the shapes of objects and their
transverse positions in the depth map. A single patterned
return only provides depth information. However, when
repeated for multiple pseudorandomly-chosen binary pat-

terns we find that the the heights of the peaks in the re-
turned signal contribute useful information that help iden-
tify object shape. Note that the depth map D is a weighted
combination of the two depth masks I1 and I2, i.e., D =
d1I

1 + d2I
2 [14]. Each binary-valued depth mask identi-

fies the positions in the scene where the associated depth is
present, thereby identifying the shape and transverse posi-
tion of the object present at that depth. Having estimated
d1 and d2 using parametric recovery of the signal p(t), the
problem of estimating I1 and I2 is a linear inverse problem.
This is because the amplitude of the signal at the time in-
stances corresponding to depths d1 and d2 is equal to the
inner product of the DMD pattern C with the depth masks
I1 and I2 respectively. Furthermore, the assumption that
the scene is fronto-parallel translates to the Laplacian of the
depth map being sparse. Hence, we may possibly recover
I1 and I2 using far fewer patterns, M , than the number of
pixels N2.

For each pattern Ci, i = 1, . . . ,M , the digital samples
of the received signal, ri[n], are processed using the para-
metric deconvolution framework to obtain the amplitudes of
the recovered parametric signals pi[n] corresponding to the
inner products y1i = 〈Ci, I

1〉 and y2i = 〈Ci, I
2〉. This data

can be compactly represented using the linear system

[y1 y2]︸ ︷︷ ︸
M×2

= C︸︷︷︸
M×N2

[vec(I1) vec(I2)]︸ ︷︷ ︸
N2×2

.

This is an underdetermined system of linear equations be-
cause M � N2. But, since the Laplacian of the depth map
D is sparse, we can potentially solve for good estimates of
the depth masks I1 and I2 using the sparsity-enforcing joint
optimization framework outlined in the next section.

5. Depth Map Reconstruction
We propose the following optimization program for re-

covering the depth masks I1 and I2 and hence, the depth
map D from the observations [y1 y2]:

OPT: min
D

∥∥∥[y1 y2]−C[vec(I1) vec(I2)]
∥∥∥2
F

+
∥∥(Φ⊗ ΦT

)
D
∥∥
1

subject to I0k` + I1k` + I1k` = 1, for all (k, `),

D = d1I
1 + d2I

2,

and I0k`, I
1
k`, I

2
k` ∈ {0, 1}, k, ` = 1, . . . , N.

Here the Frobenius matrix norm squared ‖.‖2F is the sum-
of-squares of the matrix entries, the matrix Φ is the second-
order finite difference operator matrix

Φ =


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
. . . . . . . . .

...
0 · · · 0 1 −2 1

 ,



parametric 

deconvolution

U

,

,

R

parametric 

deconvolution

=
64

64

Figure 2. Depth map reconstruction algorithm. The intensity samples ri[n] acquired for each binary pattern Ci are first processed using
parametric deconvolution to recover the scene response pi[n]. The positions of peak amplitudes in pi[n] provide depth estimates d1 and
d2 while the amplitudes themselves are used to recover the spatial structure of the depth map (i.e. the depth masks I1 and I2) at these
depth locations. The spatial resolution recovery is accomplished using a convex program that enforces gradient-domain sparsity and also
includes a robustness constraint.

and ⊗ is the standard Kronecker product for matrices.

The number of nonzero entries (the “`0 pseudonorm”)
is difficult to use because it is nonconvex and not robust to
small perturbations, and the `1 norm is a suitable proxy with
many optimality properties [5]. The problem OPT com-
bines the above objective with maintaining fidelity with the

measured data by keeping
∥∥∥[y1 y2]−C[vec(I1) vec(I2)]

∥∥∥2
F

small. I0k` is the depth mask corresponding to the portions
of the scene that did not contribute to the returned signal.
The constraints I0k`, I

1
k`, I

2
k` ∈ {0, 1} and I0k` +I1k` +I1k` =

1 for all (k, `) are a mathematical rephrasing of the fact
that each point in the depth map has a single depth value
so different depth values cannot be assigned to one posi-
tion (k, `). The constraint D = d1I

1 + d2I
2 expresses how

the depth map is constructed from the index maps. While
the optimization problem OPT already contains a convex
relaxation in its use of ‖ΦD‖1, it is nevertheless compu-
tationally intractable because of the integrality constraints
I0k`, I

1
k`, I

2
k` ∈ {0, 1}. We further relax this constraint to

I0k`, I
1
k`, I

2
k` ∈ [0, 1] to yield a tractable formulation. We

also show in Section 6.1 that this relaxation allows us to
account for partially-transmissive objects in our scenes. We
solved the convex optimization problem with the relaxed in-
tegrality constraint using CVX, a package for specifying and
solving convex programs [9, 10]. Note that this optimiza-
tion framework solves a single CS problem and optimiza-
tion without range gating. Techniques employed by [12]
assume knowledge of ranges of interest a priori and solve
a CS-style optimization problem per range of interest. In
the next section we discuss our experimental prototype and
computational reconstruction results.

6. Setup, Data Acquisition, and Results

The imaging device as shown in Fig. 1 consists of an il-
lumination unit and a single detector. The illumination unit
comprises a function generator that produces 2 ns square
pulses that drive a near-infrared (780 nm) laser diode to il-
luminate the scene with 2 ns Gaussian pulses with 50 mW
peak power and a repetition rate of 10 MHz. Note that
the pulse duration is shorter than the repetition rate of the
pulses. The detector is a cooled APD operating in Geiger
mode. When a single photon is absorbed, the detector out-
puts a TTL pulse about 10 ns in width, with edge timing
resolution of about 300 ps. After a photon is absorbed, the
detector then enters a dead time of about 30 ns during which
it is unable to detect photons. To build the histogram of ar-
rival times, we use a correlating device (Picoquant Time-
harp) designed for time-correlated single-photon counting.
The correlator has two inputs: start and stop. The output of
the laser pulse generator is wired to start, and the APD out-
put is wired to stop. The device then measures differences
in arrival times between these two inputs to build up timing
histograms over an acquisition time ta; this acquisition time
was different for the two scenes in our experiment. For each
histogram the scene receives R pulses where R = Repeti-
tion rate (10 MHz) ×ta. The photon counting mechanism
and the process of building the timing histogram are shown
in Fig. 4.

Scenes are set up so that objects are placed fronto-
parallelly between 0.3 m to 2.8 m from the device. Ob-
jects are 1 ft2 cardboard cut-outs of the letters U and R
at distances d1 and d2 respectively. Light reflected by the
scene is imaged onto a DMD through a 10 nm filter centered
at 780 nm with a 38 mm lens focused to infinity with re-
spect to the DMD. We use a 0.55 inch D4100 Texas Instru-
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Figure 3. Experimental setup for compressive depth acquisition.
(a) Close-up of the sensing unit showing the optical path of light
reflected from the scene. (b) The complete imaging setup showing
the pulsed source and the sensing unit.
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Figure 4. The process of generating a timing histogram. (top) For
a fixed DMD pattern, scene illumination with the first pulse results
in a low photon flux with a Poisson distributed photon arrival. The
APD + correlator combination records the time of arrival of these
photons with a 38 ps accuracy and increments the photon count
in the respective time bins. (bottom) This counting process is re-
peated for R pulses and the entire intensity profile is generated.

ments DMD that has 1024 × 768 individually-addressable
micromirrors. Each mirror can either be “ON” where it
retro-reflects light to the APD or “OFF” where it reflects
light away from the detector. Light that is retro-reflected to
the APD provides input to the correlator. For the experiment
we used only 64×64 pixels of the DMD to collect reflected
light. For each scene we recorded a timing histogram for
2000 patterns; these were 64× 64 pseudorandomly-chosen
binary patterns placed on the DMD. The pattern values are
chosen uniformly at random to be either 0 or 1.

6.1. Results

In this section we discuss constructions of depth maps of
two scenes using varying number of measurements, M . The
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Figure 6. Occluded scene imaging. (a) Setup for the scene oc-
cluded with a partially-transmissive burlap; the shapes U and R
are at the same depth. (b) and (c) Reconstructed depth masks for
burlap and scene using 500 patterns; (d) and (e) using 2000 pat-
terns. Note that no prior knowledge about the occluder was re-
quired for these reconstructions.

first scene (see Fig. 5) has two cardboard cut-outs of the let-
ters U, R placed at 1.75 m and 2.1 m respectively from the
imaging setup. Depths are identified from the time-shifted
peaks in the timing histogram. Recovery of spatial corre-
spondences proceeds as described in Section 4.2. We solve
a single optimization problem to recover depth masks cor-
responding to each object. In Fig. 5 b-f we see depth masks
for our first experimental scene (Fig. 5 a) for different num-
bers of total patterns used. At 500 patterns (12% of the to-
tal number of pixels), we can clearly identify the objects in
depth masks I1, I2 (Fig. 5 b, c) with only some background
noise; we also see the background depth mask correspond-
ing to regions that do not contribute any reflected returns
(see Fig. 5 d). Using 2000 patterns (48.8% of the total num-
ber of pixels) almost completely mitigates any background
noise while providing accurate depth mask reconstructions
(Fig. 5 e, f).

Imaging scenes with unknown transmissive occluders.
In the second scene we consider a combination of trans-
missive and opaque objects and attempt to recover a depth
map. The scene is shown in Fig. 6 a. Note that the burlap
placed at 1.4 m from the imaging device completely fills
the field of view. A 2D image of the scene reveals only the
burlap. However, located at 2.1 m from the imaging de-
vice are cardboard cut-outs of U and R—both at the same
depth. These objects are completely occluded in the 2D re-
flectance image. Also seen in Fig. 6 is a timing histogram
acquired with acquisition time ta = 4 s. The histogram
shows that the burlap contributes a much larger reflected
signal (12 times stronger) than the contribution of the oc-
cluded objects. Figs. 6 b, c show depth masks I1, I2 for the
burlap and occluded objects respectively for 500 patterns
while Figs. 6 d, e show depth masks obtained using 2000
patterns. The reconstruction of the depth map in the pres-
ence of a transmissive occluder is possible because of the
relaxation of the integrality constraint.
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Figure 5. Reconstruction results. (a) Scene setup. (b), (c), and (d) Depth masks I1 and I2 and the background mask I0 reconstructed using
500 patterns. (e) and (f) Depth masks reconstructed using 2000 patterns.
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Figure 7. Depth map reconstruction with simulated scene response
to longer source pulse width. We simulate poor temporal reso-
lution by lowpass filtering the captured intensity profiles so that
the Gaussian pulses overlap and interfere with the signal ampli-
tudes. The effectiveness of the parametric deconvolution tech-
nique is demonstrated by accurate recovery of the depth map as
shown in the reconstructed depth map.

High range resolution with slower detectors. When pla-
nar facets are separated by distances that correspond to time
differences greater than the pulse width of the source, the
time shift information can be trivially separated. The more
challenging case is when facets are closely spaced or there
are large number of distinct facets. A detailed analysis of
these cases for recovering depth information can be found
in [14]. However, in this paper we focus on well-separated
fronto-parallel planar facets. We briefly address the case
where our scenes are illuminated by a system with longer
source pulse width. This results in time shift information
from planar facets bleeding into each other, that is, peaks
that are not well separated in the returned signal. The use of
a parametric signal modeling and recovery framework [22]
enables us to achieve high depth resolution relative to the
speed of the time sampling at the photodetector. We demon-
strate this through simulating longer source pulse width by
smearing the timing histograms to correspond to a source
four times as slow as the source in the experiments.

Additionally, we address the case of recovering depth in-
formation when the pulse width of the source is longer than

the time-difference corresponding to the minimum distance
between objects. Techniques such as those implemented
in [12] will fail to resolve depth values from a returned sig-
nal that suffers interference of information between nearby
objects. Achieving range resolution higher than that possi-
ble with inherent source bandwidth limitations is an impor-
tant contribution made possible by the parametric recovery
process introduced in this work.

7. Discussion and Conclusions
We have described a depth acquisition system that can be

easily and compactly assembled with off-the-shelf compo-
nents. It uses parametric signal processing to estimate range
information followed by a sparsity-enforcing reconstruction
to recover the spatial structure of the depth map.

Acquiring an N × N -pixel depth map by raster scan-
ning ordinarily would take N2 measurements as in LIDAR
techniques or N2 sensors in a time-of-flight camera. Our
framework shows that measurements (or patterns), M , as
low as 12% of the total number of pixels, N2, provide a
reasonable reconstruction of a depth map. This is achieved
by modeling the reflected scene response as a parametric
signal with a finite rate of innovation [22] and combining
this with compressed sensing-style reconstruction. Existing
TOF cameras and LIDAR techniques do not use the sparsity
inherent in scene structure to achieve savings in number of
sensors or scanning pixels.

We also achieve high range resolution by obtaining depth
information through parametric deconvolution of the re-
turned signal. In comparison LIDAR and TOF that do not
leverage the parametric nature of the reflected signal are
limited in range resolution by inherent source pulse width,
i.e., the use of a longer pulse width would make it infeasible
to recover depth information and hence spatial information
correctly. The compressive LIDAR framework in [12] is
also limited in range resolution by the source-detector band-
widths, that is, the use of a source with longer pulse width
would make it challenging to resolve depth information and
hence spatial correspondences correctly.

The processing framework introduced in this paper
solves a single optimization problem to reconstruct depth



maps. In contrast the system demonstrated in [12] relies
on gating the returned signals in a priori known range in-
tervals and hence solves as many optimization problems as
there are depths of interest in the scene. Consequently, di-
rect limitations are lack of scalability in the presence of in-
creasing depth values and inaccuracies introduced by insuf-
ficient knowledge of range intervals. Additionally, the ro-
bustness constraint used in our optimization problem is also
key to jointly reconstructing the depth map using a single
optimization problem to recover a depth map with a smaller
number of patterns.

Our experiments acquire depth maps of real-world
scenes in terms of object sizes and distances. The work
presented in [14] focused on objects of smaller dimen-
sions (less than 10 cm) and at shorter ranges (less than
20 cm). The experiments in this paper are conducted at
longer ranges (up to 2.1 m from the imaging device) with
no assumptions on scene reflectivity and more importantly
at low light levels. We also address the case when transmis-
sive occluders are present in the scene. In [14] illumination
patterns were projected on to the scene with a spatial light
modulator. When these patterns are projected at longer dis-
tances they suffer distortions arising from interference. The
setup described in this paper uses patterns at the detector
thereby implicitly resolving the aforementioned challenge
in patterned illumination.

Future extensions of the work presented in this paper in-
clude information theoretic analysis of range resolution in
photon-limited scenarios and range resolution dependence
on the number and size of time bins. We also intend to in-
vestigate the number of sensing patterns required to achieve
a desired spatial resolution. On the experimental side, our
future work involves higher pixel-resolution depth map ac-
quisitions of complex natural scenes.
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